129 research outputs found

    End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification

    Full text link
    As shown in computer vision, the power of deep learning lies in automatically learning relevant and powerful features for any perdition task, which is made possible through end-to-end architectures. However, deep learning approaches applied for classifying medical images do not adhere to this architecture as they rely on several pre- and post-processing steps. This shortcoming can be explained by the relatively small number of available labeled subjects, the high dimensionality of neuroimaging data, and difficulties in interpreting the results of deep learning methods. In this paper, we propose a simple 3D Convolutional Neural Networks and exploit its model parameters to tailor the end-to-end architecture for the diagnosis of Alzheimer's disease (AD). Our model can diagnose AD with an accuracy of 94.1\% on the popular ADNI dataset using only MRI data, which outperforms the previous state-of-the-art. Based on the learned model, we identify the disease biomarkers, the results of which were in accordance with the literature. We further transfer the learned model to diagnose mild cognitive impairment (MCI), the prodromal stage of AD, which yield better results compared to other methods

    Active Mean Fields for Probabilistic Image Segmentation: Connections with Chan-Vese and Rudin-Osher-Fatemi Models

    Get PDF
    Segmentation is a fundamental task for extracting semantically meaningful regions from an image. The goal of segmentation algorithms is to accurately assign object labels to each image location. However, image-noise, shortcomings of algorithms, and image ambiguities cause uncertainty in label assignment. Estimating the uncertainty in label assignment is important in multiple application domains, such as segmenting tumors from medical images for radiation treatment planning. One way to estimate these uncertainties is through the computation of posteriors of Bayesian models, which is computationally prohibitive for many practical applications. On the other hand, most computationally efficient methods fail to estimate label uncertainty. We therefore propose in this paper the Active Mean Fields (AMF) approach, a technique based on Bayesian modeling that uses a mean-field approximation to efficiently compute a segmentation and its corresponding uncertainty. Based on a variational formulation, the resulting convex model combines any label-likelihood measure with a prior on the length of the segmentation boundary. A specific implementation of that model is the Chan-Vese segmentation model (CV), in which the binary segmentation task is defined by a Gaussian likelihood and a prior regularizing the length of the segmentation boundary. Furthermore, the Euler-Lagrange equations derived from the AMF model are equivalent to those of the popular Rudin-Osher-Fatemi (ROF) model for image denoising. Solutions to the AMF model can thus be implemented by directly utilizing highly-efficient ROF solvers on log-likelihood ratio fields. We qualitatively assess the approach on synthetic data as well as on real natural and medical images. For a quantitative evaluation, we apply our approach to the icgbench dataset

    Generating Realistic 3D Brain MRIs Using a Conditional Diffusion Probabilistic Model

    Full text link
    Training deep learning models on brain MRI is often plagued by small sample size, which can lead to biased training or overfitting. One potential solution is to synthetically generate realistic MRIs via generative models such as Generative Adversarial Network (GAN). However, existing GANs for synthesizing realistic brain MRIs largely rely on image-to-image conditioned transformations requiring extensive, well-curated pairs of MRI samples for training. On the other hand, unconditioned GAN models (i.e., those generating MRI from random noise) are unstable during training and tend to produce blurred images during inference. Here, we propose an efficient strategy that generates high fidelity 3D brain MRI via Diffusion Probabilistic Model (DPM). To this end, we train a conditional DPM with attention to generate an MRI sub-volume (a set of slices at arbitrary locations) conditioned on another subset of slices from the same MRI. By computing attention weights from slice indices and using a mask to encode the target and conditional slices, the model is able to learn the long-range dependency across distant slices with limited computational resources. After training, the model can progressively synthesize a new 3D brain MRI by generating the first subset of slices from random noise and conditionally generating subsequent slices. Based on 1262 t1-weighted MRIs from three neuroimaging studies, our experiments demonstrate that the proposed method can generate high quality 3D MRIs that share the same distribution as real MRIs and are more realistic than the ones produced by GAN-based models

    An Explainable Geometric-Weighted Graph Attention Network for Identifying Functional Networks Associated with Gait Impairment

    Full text link
    One of the hallmark symptoms of Parkinson's Disease (PD) is the progressive loss of postural reflexes, which eventually leads to gait difficulties and balance problems. Identifying disruptions in brain function associated with gait impairment could be crucial in better understanding PD motor progression, thus advancing the development of more effective and personalized therapeutics. In this work, we present an explainable, geometric, weighted-graph attention neural network (xGW-GAT) to identify functional networks predictive of the progression of gait difficulties in individuals with PD. xGW-GAT predicts the multi-class gait impairment on the MDS Unified PD Rating Scale (MDS-UPDRS). Our computational- and data-efficient model represents functional connectomes as symmetric positive definite (SPD) matrices on a Riemannian manifold to explicitly encode pairwise interactions of entire connectomes, based on which we learn an attention mask yielding individual- and group-level explainability. Applied to our resting-state functional MRI (rs-fMRI) dataset of individuals with PD, xGW-GAT identifies functional connectivity patterns associated with gait impairment in PD and offers interpretable explanations of functional subnetworks associated with motor impairment. Our model successfully outperforms several existing methods while simultaneously revealing clinically-relevant connectivity patterns. The source code is available at https://github.com/favour-nerrise/xGW-GAT .Comment: Accepted by the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2023). MICCAI Student-Author Registration (STAR) Award. 11 pages, 2 figures, 1 table, appendix. Source Code: https://github.com/favour-nerrise/xGW-GA
    • …
    corecore